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Abstract 
Genomics is the largest producer of big data, with an expected 40 EB of data every year. 

The rapid growth of genomic data necessitates efficient methods for analysis and 

classification. We present a novel, automated pipeline for swift phylogenetic tree 

construction from long-read sequencing data. Our approach addresses computational 

challenges by utilizing compact repeat graphs instead of full genome assemblies. We 

integrate advanced graph embedding techniques, combining structural and content-

based approaches, to capture genomic relationships efficiently. Demonstrating our 

method on 20 bacterial genomes across 5 classes, we achieve a cophenetic correlation of 

0.53 with the ground truth phylogenetic tree. Our pipeline reconstructs meaningful 

evolutionary relationships directly from sequencing reads without requiring complete 

assemblies or time-consuming alignments. This work represents a significant 

advancement towards rapid pathogen classification during outbreaks and offers a 

scalable solution for analyzing the expanding universe of sequenced organisms. By 

bridging graph theory, machine learning, and genomics, our method paves the way for 

more efficient phylogenetic analysis in the era of big data biology. 

Introduction 

he large volume of genetic collected over time is not useful until it is analyzed and 

classified properly. Phylogenetics is the study of finding relationships among 

species or genes with the combination of molecular biology and mathematics. A 

phylogenetic tree or an evolutionary tree, as shown in Figure 1, is a graph that shows the 

evolutionary relationships among various biological species based on their evolutionary 

history and shared ancestors. 

Conventionally, phylogenetic trees are constructed using expert crafted features 

including specific marker genes [15,16,17]. Typical work in automating the construction 

of this tree obtains similarities between raw genomes, requiring one to perform pairwise 

alignments among genetic sequences. A huge amount of work has been dedicated to 
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speeding up the process and improving the quality of multiple sequence alignment on 

sequences within a given dataset [4,5,18]. 

However, so far, the most well-known algorithms that construct high-quality 

phylogenetic trees requires sequences of species which have been assembled from 

sampled reads beforehand. In addition, the use of dynamic programming in solving 

sequence alignment problem with time complexity of 𝑂(𝑚𝑛), where𝑚 and 𝑛 are lengths 

of two genomes, makes the entire process fairly time consuming. Genome assembly is the 

process of taking a large number of DNA fragments, known as reads, from DNA sequencer 

and putting them back together to create a representation of the original chromosomes 

from which the DNA originated. Nowadays, several popular assembly algorithms 

[9,19,20,22] have been developed to assemble short, 100-200 base-pair long, or long, 

10,000-100,000 base-pair long, reads. These techniques incorporate graph-based 

algorithms by first building assembly graphs, as shown in Figure 2, with their edges 

representing k-mers or overlapping sequences and convert the entire assembly into a 

graph traversal problem. 

 

 

Figure 1: An example of phylogenetic tree 

It is understood that these generated assembly graphs encode sufficient information for 

one to reconstruct genomes. We propose a method to use this type of graph as a more 

informative representation of a single genome. Therefore, it becomes reasonable that we 

can obtain similarities between genomes via comparing graph similarity. Moreover, it is 

possible that we build phylogenetic trees using a reasonable amount of time compared to 

conventional approaches given only sequencing reads, while exploiting the rich, untapped 

graphical structure of genomes. 
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Figure 2: Various types of assembly graphs 

In this work, we design and implement a complete pipeline to fully automate the process 

of phylogenetic trees construction. Given a large number of reads of a single genome, we 

generate and preprocess the desired assembly graph into a more condensed format with 

the help of powerful, open-sourced software, Flye Assembler [9]. We implement various 

types of graph embedding schemes, e.g. node2vec [6], struc2vec [14] to derive the 

representation of a graph that best encodes its structural and content information. 

Thereafter, similarity between two genomes may be obtained by comparing graph 

similarity using Pyramid Match Kernel in [13]. The final dendrogram is then built using 

hierarchical clustering. 

The designed automated pipeline performs considerably well after evaluation, a 

correlation coefficient of 0.53 with the ground truth phylogenetic tree. In addition, from 

the final dendrogram, one can find out that bacteria belonging to the same category are 

classified to the same cluster most of the time. 

Although we have identified several causes which may be limiting us from obtaining a 

higher correlation, our work demonstrates that biological relationships can be 

automatically established for any new species without needing complete whole genomes. 

We believe that this pipeline may be used to quickly characterize new pathogens via 

clustering during disease outbreaks. 

In this paper, we organize the contents as follows: In section 2, we talk about the source 

of the data and how we generate the ground truth. Details of each phase of the pipeline 

are discussed in section 3. Experiments we conducted and evaluation methods are 

explained in section 4. We then describe prior works and the conclusion in sections 5 and 

6, respectively. 

Datasets Used 
NCBI GenBank database [23] is home to whole genome assemblies of every bacterium 

known to the public. We identify 5 different classes of bacteria and pick 4 closely related 

bacteria from each class: 
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• Alpha-proteobacteria: E coli, Salmonella typhi, Pseudomonas aeruginosa and 

Salmonella enterica. 

• Firmicutes: Enterococcus faecalis, Streptococcus pneumoniae, Listeria 

monocytogenes and Bacillus subtilis. 

• Actinobacteria: Mycobacterium bovis, Mycobacterium tuberculosis, Streptomyces 

avermitilis and Mycobacterium paratuberculosis. 

• Beta-proteobacteria: Neisseria meningitidis A, Chromobacterium violaceum, 

Bordetella pertussis and Nitrosomonas europaea. 

• Epsilon-proteobacteria: Helicobacter pylori, Helicobacter hepaticus, Wolinella 

succinogenes and Campylobacter jejuni. 

From NCBI GenBank database, the whole assembly for all the bacteria are downloaded. 

Artificial Oxford Nanopore technologies (ONT) MinION sequencer reads are randomly 

generated ensuring 50X coverage using BBMap, a bioinformatics tool. 

Assembly graphs constructed from these datasets have node numbers in the order of their 

genome sizes. The genome assembly graphs contain anywhere from 4.3M to 14M nodes 

in each of them, resulting in roughly 180M nodes across all 20 assembly graphs in total 

and an average of 9M nodes per bacterial assembly graph. 

We constructed the ground truth phylogenetic tree of the selected 20 bacteria following 

Hug et.al [7]. The ground truth tree in Figure 3 clearly displays the genetic relationships 

between bacteria. Here, we define the dendrogrammatic distance between a pair of 

bacteria as the number of hops between them in the ground truth evolutionary tree of life 

for the 20 bacteria under consideration. How we evaluate the performance of our work 

will be discussed in section 3 in detail. 

PROPOSED METHOD 
Figure 4 shows the complete pipeline of our work. In this section, we discuss our proposed 

method for automatically generating the phylogenetic tree from long read genomes in 

detail. 
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Figure 3: The ground truth phylogenetic tree 

Graph compression: From Assembly to Repeat Graphs 

Bacterial genomes under consideration range from 4.3M to 14M base-pairs long. Reads 

generated by the sequencers have 40-50X coverage which means that we have roughly 

400M+ base-pairs of information per bacteria and there are 20 bacteria in total. In real 

life scenario, we have 330M+ species of bacteria and storing information can be a 

significant task, given that long-read assemblers are still in the growing stages. Hence, we 

try to innovate this step by making use of a compact representation of the assembly graph 

called repeat graph. 

Repeat graphs are built using approximate sequence matches and can tolerate higher 

noise level of the input reads. Each edge is labeled with its index, length, coverage, 

orientation, number of repetition and the corresponding contigs. Using repeat graphs, 

several millions of nodes from the original assembly graph get converted into a much 

smaller repeat graph in which the edges contain sufficient information that could 

represent a complete sequence of a bacterium, as shown in Figure 5. In order to generate 

repeat graphs for genomes, we utilize an open-sourced long-read assembler called Flye 

[9] and tweak its parameters to obtain the desired repeat graphs instead of using the draft 

genome assembly. 

As described above, each edge embeds rich information representing part of the genome 

while all nodes are simply junctions in the genome segments without any meaning, unlike 

common graphs where nodes represent meaningful entities and edges represent 

relationships. Furthermore, embedding schemes we use are mainly node-based. 

Therefore, we further convert the original repeat graphs into line graphs with steps 

depicted in Figure 6, in which each node corresponds to an edge of the original graph 

while structure of the original graph is still retained. 

Graph Embeddings 
The decision to use node embeddings was motivated primarily by the structure of the 

repeat graphs. For most bacteria, the generated repeat graphs would be composed of a 

relatively small number of nodes and edges, but each edge will have a large amount of 

metadata associated with it. This includes a long sequence of DNA base pairs, called a 

contig, the number of times this sequence was repeated in the original input sample, the 

number of input reads that contributed to this sequence etc. The length of these contigs 

would vary wildly between nodes, with some being composed of only several thousand 

base-pairs, while others being made up of millions of base pairs. We propose using 

embeddings to compare pairwise similarity between graphs while utilizing all this 

information. 
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Figure 5: An example of compressing an assembly graph into a repeat graph 

 

To get a representative set of embeddings, for each graph we generated a set of structural 

embeddings and a set of content embeddings, which were then concatenated together to 

generate one large set of embeddings. 

 

 

Figure 6: Illustration of a graph and its line graph 

Structural Embeddings  

To encode the structural information about the graphs, we tried use node2vec [6] and 

struc2vec [14] for our embeddings. For both methods, default values were used for all 

parameters except for the dimension of the embeddings. 

 

 

Flye 
Assembler 

Repeat 
Graphs Embeddings Graph 

Similarity Dendrogram 

DNA Reads Phylogenetic Tree 
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Content Embeddings 

For generating embeddings for the contigs, we used BioVec [1], which is an 

implementation of Word2Vec [10] for DNA sequences, where a contig is treated as a 

sentence, and small fixed length sequences of the contig is treated as words. Biovec is 

limited to dealing only with sequences of length 3, with any sequence longer than that 

being broken into multiple sequences of 3 and then embedded independently. This 

method is fast to both train and for generating embeddings. 

The second method we opted to use was dna2vec [12], which is similar to Biovec, but can 

be generalized to sequences of any length, and supports variable length sequences. This 

method takes much longer to train to generate embeddings with and has a much higher 

memory footprint. 

Both methods were trained using bacterial genomes as a corpus, and embeddings 

generated by both methods were scaled by each node’s repeat number to accurately reflect 

the DNA structure of the original genome. 

Graph Similarity 

In order to generate a phylogenetic tree, we compute the similarity of each graph using 

the node embeddings generated from the repeat graphs. Here we employ the Pyramid 

Match Graph Kernel from [13] to measure similarity using node embeddings. 

The Pyramid Match Graph Kernel operates on normalized embeddings in their latent 

Euclidean space and partitions this space into bins. By comparing the bins in which the 

embeddings fall for a pair of graphs, we can get a well-defined kernel similarity function. 

Varying the size of these bins and weighting accordingly allows the algorithm to more 

accurately capture the Euclidean similarity of the node embeddings. Finally, the 

algorithm can be easily extended to graphs with discrete node labels by only comparing 

nodes with the same labels and summing up similarity scores across label classes. 

While this is an attractive extension of the Pyramid Match Kernel, our data fit the 

continuous, latent structure of graph embeddings much better than discrete labels, so our 

final pipeline does not discriminate based on discrete node labels. We carefully vectorize 

the implementation of the Pyramid Match Kernel since we require the distance between 

all pairs of graphs in order to cluster them. We use vectorized numpy functions in addition 

to a just in time compiler for python known as “numba” in order to optimize the 

performance of the similarity calculation 

We opt not to use the Earth Mover’s Distance similarity measure, also presented in [13]. 

The Earth Mover’s Distance method has O(𝑛3 log(𝑛)) time complexity for a pair of graphs 

with 𝑛 nodes, which is prohibitive even for reasonably sized graphs. In contrast, Pyramid 

Match Kernel has time complexity O(𝑑𝑛𝐿) for embedding dimension 𝑑, 𝑛 nodes, and 𝐿 

different levels of bin sizing. This method scales linearly with the size of the graphs, which 
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is much more manageable. Additionally, while the Pyramid Match Graph Kernel is truly 

a kernel method (that is, it defines a positive semidefinite kernel function which affords 

us some nice theoretical guarantees [13]), the Earth Mover’s Distance method requires 

solving an additional complicated linear program in order to transform the similarity 

measure from an indefinite kernel into a true kernel method. Using a non-exhaustive 

heuristic search, we found that L = 4 gave the best results for our data. 

Dendrogram Construction 

After generating the distance between all pairs of graphs using the Pyramid Match Kernel 

as described above, we build the phylogenetic tree as a dendrogram using hierarchical 

clustering. Section 4.2 outlines in more detail our experimental results comparing across 

different types of linkages at this stage in the pipeline, but Ward’s method was found to 

yield consistently better results than other linkage techniques. 

Note that most hierarchical clustering algorithms have time complexity between O(𝑛2) 

and O(𝑛3) depending on the linkage criterion. In our case this was not prohibitive since 

we have selected a fairly small subset of bacterial genomes on which to create the 

dendrogram. Nonetheless, it does challenge the extension of our method to larger 

datasets. More efficient methods of performing hierarchical clustering is an area with a 

significant body of literature [3] [2] [11] and may be treated as a promising area for future 

extensions of our method. 

Evaluation Method 

The use of Ward linkage completes the pipeline for phylogenetic tree generation, but an 

additional step is needed for comparing our dendrogram to the ground truth tree. For this 

we used cophenetic correlation: 

 

where 𝑥(𝑖, 𝑗) measures the dendrogramatic distance of elements 𝑖, 𝑗 of the ground truth, 𝑡 

(𝑖, 𝑗) measures the dendrogramatic distance of elements 𝑖, 𝑗 in our model, and 𝑥,¯ 𝑡¯ are 

their averages, respectively. This correlation coefficient is simply a Pearson correlation of 

the dendrogrammatic distance in our model with the dendrogrammatic distance in the 

ground truth. This gives us a quantitative way to compare our results with the ground 

truth. 

It is important to note that we are using dendrogrammatic distance in a different context 

unlike typical methods. Linkage defines the distance between clusters given all pairwise 

distances between original observations and yields a real-valued dendrogrammatic 

distance between any pair of observations in the dendrogram. The format of our ground 

truth data however restricts us to the discrete dendrogrammatic distance measure 

described at the end of Section 2. The ground truth tree given by NCBI specifies only the 
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splits in the tree without the real-valued distance between them. To deal with this, we use 

the graph-hop counting strategy to calculate the dendrogrammatic distance in both the 

ground truth and our model. 

Experiments 

Evaluation and Results 

Our final cophenetic correlation coefficient was 0.53 using embeddings from node2vec 

and dna2vec, Pyramid Match Kernel with 𝐿 = 4, and ward linkage. The generated 

dendrogram is given in figure 7. 

We hypothesize that the primary reason this correlation coefficient is not closer to 1 is the 

discretization of our dendrograms. Figure 3 and our ground truth tree do not encode any 

continuous notion of similarity, but nonetheless the content and structure of the genomes 

we use have similarity and distances which are much closer to continuous than discrete. 

Bacteria within the same class can be very closely related to one another while still being 

a handful of hops away, implying that important information is lost at this stage which 

makes our evaluation metric rougher that it might be in the continuous case. Nonetheless, 

given the complexity of our problem space, we are pleased to see reasonable correlation 

with the ground truth. 

 

 

Figure 7: Generated phylogenetic tree as output from our pipeline. 

Varying Linkage Criteria 

In exploring the hyperparameters for our pipeline, one interchangeable piece we 

optimized over was the linkage criteria. Figure 8 summarizes our findings. 
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Figure 8: Correlation values for Linkage types, averaged over differing valuesfor embedding 

dimensions and𝐿 for Pyramid Match Kernel. 

The single linkage criteria use the following formula to assign distance measures: 

 

For all points I in cluster u and j in cluster v. Intuitively, this linkage technique leads to 

chains of points which are individually close but as a group can be far. Since the Pyramid 

Match Kernel looks at embeddings in a Euclidean space in all dimensions, it makes sense 

why the single method would perform the worst since it can result in spread out chains 

as clusters. 

The complete linkage criteria uses the following formula to assign distance measures: 

 

for all points 𝑖 in cluster u and j in cluster 𝑣. This has the opposite effect as the single link 

method and aims to keep the most dissimilar elements as close as possible, effectively 

pushing the clusters towards higher dimensional spheres. This aligns well with our 

similarity metric, which is why complete linkage performs second best out of those tested. 

The average linkage criteria uses the following formula to assign distance measures: 

 

 

for all points 𝑖 in cluster u and j in cluster 𝑣, where |𝑢| is the cardinality of cluster 𝑢 and 

likewise for 𝑣. This method is subject to some of the same weaknesses as the single link 

method although less so since it takes all data points into account. For this reason, it is 

the second worst performing method of those tested. 

The Ward linkage criteria use the following formula to assign distance measures: 
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where 𝑢 is the newly joined cluster consisting of clusters 𝑠 and 𝑡 , 𝑣 is an unused cluster in the forest, 

𝑇 = |𝑣 | + |𝑠 | + |𝑡 |, and | ∗ | is the cardinality of its argument. This method can intuitively be thought 

of as minimizing the variance within a given cluster. This aligns very well with our similarity 

metric since it takes all elements of a cluster into account while minimizing the ways in which 

they differ in the Euclidean space. This method is the most sophisticated and is the best 

performing of all the linkage criteria we tested 

 

Varying Embedding Types 

For embeddings, we experiment with various combinations of structural and content 

embeddings. 

 

Figure 9: Correlation values for Embedding methods 

Our results show that there is not much difference in correlation value between the two 

structural embedding methods, node2vec and struc2vec, but there is a noticeable 

difference between the two content embedding methods dna2vec and biovec. This is to be 

expected as most of the information regarding the original genome is encoded in the 

metadata for of each node, thus their embeddings will contribute the most towards 

calculating similarity. The final repeat graphs are also small and sparse, and as such the 

embeddings generated by the two methods might not be noticeably different from each 

other as they do not have much information to work with. Dna2Vec having better results 

than BioVec is also to be expected. Because Dna2Vec can handle sequences of greater 

length than BioVec, the embeddings generated by it might also have more information 

encoded in them due to the larger context. Dna2vec is also better suited to handling inputs 

of varying length, which would be a considerable advantage in this situation because, as 

mentioned earlier, then length of contigs could vary wildly even within a single graph. 

Furthermore, our results also show that combining both structural and content 

embeddings produce better results than using either in isolation. This shows that 

considering the structure of the graph and the contigs of each node are important for 

accurately evaluating similarity between genomes. 
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Related Work 
Comparing genome similarities for phylogenetic tree construction has been a 

bioinformatician’s problem in the past few decades [4,5,8,18]. These tools often provide 

reasonably accurate results and overcome several limitations, and some of them are very 

popular and widely used nowadays. 

However, all these previous works require complete sequences of species in the datasets. 

Our proposed pipeline incorporating various graph mining techniques mentioned in 

former sections, is the very first automated approach, to the best of our knowledge, that 

builds phylogenetic trees solely from sampling reads. 

Conclusion 
Our innovative pipeline demonstrates significant potential for revolutionizing 

phylogenetic tree construction in the era of big data genomics. By leveraging compact 

repeat graphs, advanced graph embeddings, and efficient similarity measures, we've 

shown it's possible to rapidly generate meaningful evolutionary relationships directly 

from sequencing reads. Our method's ability to achieve a 0.53 cophenetic correlation with 

ground truth, without full genome assembly or alignment, marks a substantial 

advancement in the field. This approach not only accelerates pathogen identification 

during outbreaks but also offers a scalable solution for analyzing the ever-expanding 

universe of sequenced organisms. As genomic data continues to grow exponentially, our 

work paves the way for more efficient, accurate, and timely phylogenetic analysis. 
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