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Abstract  
The translation of C programs to Verilog can present significant challenges for 

programmers aiming to synthesize hardware. To address these challenges, several High-

Level Synthesis (HLS) tools have been developed, focusing on minimizing human efforts. 

In this research paper, we conduct an extensive study to gain a comprehensive 

understanding of the HLS landscape, with a particular emphasis on evaluating the 

performance of LegUp, a popular open-source HLS tool. Moreover, we explore the 

possibilities of hardware-specific optimizations within the HLS flow to enhance area 

utilization and run-time efficiency. To achieve this, we augment LegUp’s static range 

analysis with dynamic range analysis, resulting in reduced FPGA area usage. Additionally, 

we demonstrate the benefits of combining bit-width optimization and operation chaining, 

leading to a decrease in the number of FPGA slices required. Expanding our investigation, 

we delve into hardware-software co-design, showcasing the positive impact of cache miss 

event-based profiling and cache pre-fetching on overall system performance. Through 

this research, we aim to provide valuable insights into the capabilities and potential 

enhancements of LegUp while offering novel approaches for optimizing hardware 

synthesis and co-design processes. 

Introduction 

ield Programmable Gate Arrays (FPGAs) are increasingly being utilized for the 

development of customized application-specific accelerators [1, 2, 3]. While FPGAs 

offer fine-grained parallelism that can outperform general-purpose CPUs, they are 

not yet the preferred choice for algorithm developers seeking high performance 

platforms.  

One of the primary challenges in FPGA adoption lies in the translation of programs from 

High-Level Languages (HLLs) such as C or Python to Hardware Description Languages 

(HDLs) suitable for hardware synthesis. Achieving precise control over timing sequences 

while maintaining programmability at the high level is difficult. Previous studies 
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[14,15,16] have focused on designing intelligent tools for automating this translation 

process, known as High-Level 

 

Figure 1: High-Level Synthesis Flow 

focused on High Level Synthesis (HLS) which refers to translation from HLLs to HDLs. 

These works primarily aim to reduce turnaround time and enhance efficiency. 

In this context, prior focus [6,7,8] is directed towards intelligent program translation 

from HLLs to HDLs, coupled with hardware-specific optimizations using commercial 

HLS tools such as Xilinx Vivado HLS. However, most popular HLS tools, including Xilinx 

Vivado HLS [15], are closed sourced and are only commercially available, restricting users 

from implementing custom LLVM passes to optimize the HLS workflow and observe 

hardware performance improvements. Among these state-of-the-art HLS tools, LegUp 

[6] stands out due to its applicability and flexibility. Notably, LegUp utilizes the LLVM 

infrastructure, allowing for the addition of custom back-end compiler passes. 

However, the flexibility of LegUp comes at the cost of abstracting away most of the 

optimization details, while the underlying optimizations in LegUp remain incomplete. In 

this research paper, we first evaluate the performance of LegUp using various 

benchmarks. Based on these evaluations, we incorporate hardware optimizations 

inspired by Shang [14], another open-source HLS tool, into LegUp. Our evaluation results 

demonstrate superior performance compared to the baseline LegUp. 

Advancing into the realm of hardware-software codesign, prior studies have aimed to 

improve overall performance by minimizing communication between the CPU and FPGA 

through low-speed buses. To this end, we analyze memory access traces using PinTool 

[17] and explore the potential benefits of machine learning heuristics for memory 

prefetching. Building upon these empirical findings, we present the following 

contributions: 

• We conduct an evaluation of LegUp using diverse benchmarks and provide valuable 

insights for software-hardware co-design. 

• We implement optimizations in LegUp and evaluate their performance on a real 

FPGA platform. 
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• We analyze memory access traces and employ LSTM techniques to demonstrate the 

advantages of prefetching, which can enhance both software execution and hardware 

operation. 

Flow Optimizations 

Bitwidth optimization 

The C programming language defines a standard set of data types with fixed lengths, 

typically 8, 16, 32, or 64 bits. This coarse quantization inherently results in the under-

utilization of bits. Traditionally, there has been limited incentive for programmers to 

optimize variable bit widths, as processor data-paths are constrained to fixed widths. 

However, when a program is synthesized into hardware using High-Level Synthesis 

(HLS), optimizing the bit-level representation directly translates to circuit area and power 

reductions [8]. In the case of LegUp 4.0, it solely supports static range analysis, claiming 

a maximum slice usage reduction of up to 30% on FPGA platforms. 

Static range analysis relies entirely on compile-time information, such as constants in 

the code. Bit-width reductions achieved through static range analysis preserve program 

correctness, ensuring accurate execution for all input datasets. Conversely, dynamic 

range analysis infers ranges based on runtime information specific to a particular input 

dataset, enabling more significant bit-width reductions. However, it comes with the 

caveat that the bit-width-reduced program is no longer guaranteed to work correctly for 

all inputs. We propose that combining static and dynamic range analysis within LegUp 

4.0 would yield notable improvements in hardware area utilization. 

Operation Chaining 

Operation chaining is a technique defined by LegUp 4.0 that diminishes the cycles in a 

design by enabling the result of an operation to be utilized in the same cycle [8]. Here, the 

time consumed for both the operations is ensured to be less than the critical path so that 

the clock frequency is not affected. 

 

Figure 2: Structure of a LSTM network [9] 
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We propose that utilizing the combination of these two optimizations- bit-width 

optimizations and operation chaining- would yield us significant observable results on a 

synthesized hardware. 

Memory Prefetching 

Although FPGAs have been widely used in real production, they often come with limited 

communication resources, especially when they connect to other components with a low-

speed bus. Noting the high cache miss rates from our LegUp profile and the hardware 

constraints in our FPGA setting, we make some efforts to explore the benefits of 

prefetching with some commonly practiced prefetch algorithms, a solution we designed 

based on spatial and temporal locality [18, 19], as well as a LSTM-based machine learning 

heuristic [20]. 

Prefetching for locality 

A common practice of prefetching is to fetch adjacent next-K [18] memory addresses 

along with the current address. For example, when page A is being accessed, the 

prefetcher assumes that page A+1, A+2,..., A+K are also going to be accessed in the near 

future and brings those pages into the page table proactively. This approach is very helpful 

for accessing long regular streams. However, if memory addresses are not accessed 

sequentially, then this next-K page prefetching approach is not very beneficial. 

Another common trend in prefetching is to correlate events in the memory access history 

[20] (usually by PC or Load Address), which relies on data access history repeating itself. 

However, spatial locality can be addressed by temporal correlation-based algorithms only 

if the sequential accesses are being frequently repeated. If non-repetitive sequential 

accesses cover a significant portion of the memory access trace, then this temporal 

prefetching technique shows low accuracy. 

LSTM Pre-fetcher 

In LSTM based prefetchers [20,21,22], the sequence of accessed pages over a period is fed 

to the LSTM optimizer and the weights and biases are trained as shown in Figure 2. Once 

the training is complete, it is tested using a dataset which is a holdout sample of prefetch 

access sequences. The algorithm takes in n input number of elements and predicts the 

next page to be accessed. The corresponding page is then stored in the prefetch queue if 

not present, or its access time is updated otherwise. If the queue size is full, the least 

recently used (LRU) element is switched out of the queue. In this way, the LSTM 

prefetcher attempts to keep the most likely pages in the prefetch queue for quicker access. 

In this paper, our LSTM prefetcher was trained on a sample of page access sequences 

generated using the tools discussed. Due to the huge size of data generated, only a 

representative set of sequences was used for training and testing the LSTM model. The 

time it takes for the model to train varies with input size. At the same time, testing returns 
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a prediction for every sequence of length equal to number-of-inputs in the test sequence 

file. 

Evaluation Setup 

Pure hardware flow 

Pure hardware flow means that the entire HLL code is converted to Verilog and 

synthesized to hardware on an FPGA. There is no soft-processor or CPU involved. We 

chose this operating mode mainly based on two observations. First, the CPU-FPGA hybrid 

system is still a concept product, there are no such boards we can get from market. 

Second, the soft processor in the original implementation of LegUp stalls itself whenever 

the hardware accelerator is running. In that case, simulation for hybrid mode seems 

inappropriate as implementing more functions on FPGA will always improve parallelism. 

In our project, we used a Spartan-7 FPGA on XiIinx Arty S7-50 development board. 

With our custom pass for dynamic range analysis added, LegUp generated Verilog 

Register Transfer Level (RTL) code with 4 different HLS configurations: 

• Operation chaining enabled 

• Bit-width optimization enabled. 

• Bit-width optimization and chaining enabled. 

• None of the above enabled. 

Prefetching for co-design 

Workloads: To get an idea about how memory addresses are being accessed by data-

intensive applications, we run three unmodified memory-intensive applications using 

industrial benchmarks and production workloads. 

 

Figure 3: Running cycles for benchmarks with HLS optimization ‘ON’and ‘OFF’ 
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Figure 4: Percentage area saved on FPGA with static and dynamic range analysis for bit-width 

optimization 

• TunkRank algorithm over Twitter dataset on PowerGraph [23]; 

• Facebook workloads (ETC) [24] on Memcached; 

• PC-C benchmark on VoltDB [25]; 

Evaluation Results 

Pure hardware flow optimization 

We ran a set of benchmarks provided by LegUp on a Verilog simulator. We get the run 

cycles for both the cases where we disabled and enabled HLS optimizations, as shown in 

Figure. 3. From Figure. 3, we can see that with the HLS optimizations ‘ON’, the simulation 

cycles for most benchmarks are significantly decreased. However, the divider benchmark 

is seen to have less improvement even after optimization because the LegUp-generated 

RTL for Verilog divider module is not an optimum design. This is the downside of 

automating C to RTL design translation. 

 

 

Figure 5: LUT consumption on FPGA for default HLS configuration, with bit-width optimization 

(static and dynamic range analysis) enabled, with chaining enabled and a combination of bit-wdith 

optimization and chaining enabled, in this order from left to right. 

From Figure. 4, it is evident that with dynamic range analysis functionality added to 

LegUp 4.0, the savings on area went up from 20% to 67%. This is not surprising as static 
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range analysis can only save so little on area. On adding dynamic analysis on run-time, 

we compromise the correctness of the program for various inputs to gain improvement 

in terms of area. 

From 5, we can see that the LUT usage (area) on FPGA is reduced by 67% on using bit-

width optimization or chaining but is improved by as high as 73% on combining bit-width 

optimization (dynamic and static range analysis) with operation chaining. This significant 

improvement when we club both optimizations is because bit-width optimization frees up 

LUTs and chaining enables related operations to be scheduled together on the same cycle. 

It is important to note that we are constrained by an upper bound on the maximum LUTs 

that can be used (1%) by the synthesized code because our constraint file fed to the 

allocation step of LegUp originally does not support our Spartan-7 FPGA. A video 

comparing the run-times on FPGA is uploaded here: https://youtu.be/wt0gY-ss48w. 

Here, we can see that with both chaining and bitwidth optimization enabled (static and 

dynamic range analysis), we save 60% of run-time for our selected loop benchmark. This 

is something which we could evaluate on all benchmarks in the future. 

Pre-fetching for co-design 

We used PIN [11], a runtime binary instrumentation tool to capture the memory and 

instruction pointer traces for each of the above mentioned applications. For each of the 

applications, at the very beginning of the run, an initialization period is required to build 

network connection and then read from disk to generate the workload. After the 

initialization step, the applications perform computation over the workloads. During the 

preparation and computation time, the temporal prefetching algorithm gives better 

results than the spatial one. But, during the large read/write operation, the performance 

of spatial prefetcher tends to improve while the temporal one shows a negative trend. 

 

Figure 6: Prefetch accuracy over number of pages being accessed for Facebook ETC workload (queue 

size = 512) 

https://youtu.be/wt0gY-ss48w
https://youtu.be/wt0gY-ss48w
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Figure 7: Trend of test accuracy with number of inputs 

Figure 6 shows the above-mentioned scenario for MemCached trace. Over time, accuracy 

of the spatial prefetching techniques rises from 8% to 46% and while the accuracy of 

temporal prefetcher drops from around 75%to 65%. For VoltDB and PowerGraph traces, 

the accuracy of the spatial prefetcher is around 54% and 65% respectively. One may note 

that for temporal prefetchers the accuracy is around 72% and 78% respectively. 

Figure 7 reports the evaluation results of LSTM, where testing was carried out using 

prefetch queues of various lengths such as 1, 2, 4, 8, 16, 32 and longer. In this evaluation, 

we used a training page sequence of length of 900,000 and tested it with 500 cases from 

a page sequence of length 100,000. It was found that the prediction quality of the LSTM 

predictor was high enough that the length of the prefetch queue became insignificant for 

testing accuracy. In most cases, the predictor is able to accurately predict the next page to 

be accessed, which means that having a queue larger than 1 does not lead to any 

performance enhancements. In cases where the sequence deviates from the ‘memory’ 

held by the LSTM model and leads to incorrect predictions, the required page was last 

accessed long enough in the past that it no longer remains in the queue. 

Discussions and Takeaways 

LegUp supports only hardware-only flow on many FPGAs. There was no pre-

characterization file recommended from LegUp as the input to allocations in the HLS tool 

chain flow for our Xilinx Spartan-7 and hence, by default, LegUp does not generate RTLs 

which are ready-to-be synthesized on Arty S7. 

Pure HW-flow optimizations on LegUp are far from complete. Although LegUp can 

provide user-defined optimizations during its synthesis, most of these optimizations 

greatly depend on the users’ experience, which makes the co-design intractable. For 

example, users may find it difficult to specify which function to offload and when to 
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offload. In this context, we can expect an Integer Linear Programming solution for this 

problem. 

Machine learning is promising, but presents some overhead in training and deployment. 

Although we have shown an encouraging trend to applying machine learning-based 

heuristics on memory prefetching, they often introduce noticeable performance 

overhead. For example, the training accuracy greatly depends on the dataset, and varies 

with different features. Meanwhile, a simple prediction inference can take O(100) ms, 

which make the real-time interaction with system become impossible. One future 

direction is to explore convolution based networks to reduce inference times. 

Conclusion 

LegUp, an open-source LLVM based HLS tool, has been widely recognized to achieve 

desirable performance with LLVM-IR optimizations and its inherent allocation, 

scheduling and binding stages. In this work, we show that the area usage and the 

execution time for a pure hardware flow on an FPGA may be further optimized by 

orchestrating a bit-width optimization scheme in dynamic range analysis within LegUp. 

Also, it is observed that the bit-width optimization makes it possible for operation 

chaining to further improve the area usage. We learn that the hardware-software co-

design can be a future direction when we consider cache miss rates, which can be 

improved by heading toward machine learning based approaches for memory 

prefetching. However, a desirable machine learning-based solution should carefully 

achieve the trade-off between performance and potential overhead. 
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